🌩️ Matura Czerwiec 2013 Zad 24

3. Zegar C wskazuje godzinę 10:44:24. P F 4. Zegar D wskazuje godzinę 17:48:54. P F Wypełnia egzaminator Nr zadania 2.2. 3.1. Maks. liczba pkt. 3 1 Uzyskana liczba pkt. Więcej arkuszy znajdziesz na stronie: arkusze.pl Matura – Matematyka – Czerwiec 2013. Poniżej znajduje się arkusz maturalny z matematyki (matura podstawowa – czerwiec 2013). Jest to arkusz interaktywny, co oznacza że możesz na nim zaznaczać odpowiedzi, otrzymując na koniec nie tylko wynik, ale także wskazanie poprawnych i błędnych odpowiedzi. http://matfiz24.plZadanie 1Liczba podana w zadaniu w filmie jest równa Zobacz odpowiedź do zadania maturalnego. Zadanie 9.19. [matura, czerwiec 2013, zad. 7. (1 pkt)] Kat a jest ostry i Sina = —. Wartoéé wyraŽenia 1 + tg a cos a jest równa 1- 11 17 11 Zadanie 9.20. [matura, czerwiec 2013, zad. 28. (2 pkt)] Kat a jest ostry i cosa = — Oblicz wartošé wyraŽenia 2 + sin3 a + sin a cos2 a. Zadanie 9.21. [matura, maj sierpieó 2013, zad. 24. (1 pkt)] Udowodnij, że dla każdej liczby rzeczywistej x i każdej liczby rzeczywistej y prawdziwa jest nierównośćx(x-1)+y(y-1) jest większe lub równe xy-1.Poziom rozsz ferrytyny wchodzą aż 24 łańcuchy, a więc ferrytyna jest białkiem o strukturze IV-rzędowej. • IV-rzędowa, bo składa się z wielu łańcuchów należących do dwóch rodzajów: H i L. 1.2. (0–1) Wymagania egzaminacyjne 2022 Wymaganie ogólne Wymagania szczegółowe I. Poznanie świata organizmów na różnych http://akademia-matematyki.edu.pl/ Każde z ramion trójkąta równoramiennego ma długość 20. Kąt zawarty między ramionami tego trójkąta ma miarę 150∘. Pole 5 Matura Matura Czerwiec Czerwiec 2019, 2019, Poziom Poziom rozszerzony rozszerzony (Formuła (Formuła 2007) 2007) - Zadanie Zadanie 12. 12. (1 (1 pkt) pkt) Wyróżnia się trzy rodzaje włosowatych naczyń krwionośnych: naczynia o ścianie ciągłej, Matura naczynia Maj o ścianie 2020,oraz okienkowej Poziom naczyniapodstawowy o ścianie Do 24 B. 20 Zadanie 11039. [matura, czerwiec 2013, zad. 14. (1 pkt)] Kosinus kata ostrego rombu jest równy równe bok rombu ma dlugoéé 3. Pole tego rombu jest Zadanie 11.40, [matura, czerwiec 2013, zad. 19. (1 pkt)] PrzyprostokQtne w trójkqcie prostokqtnym majQ dlugoéci 1 oraz VS. Najmniejszy kat w tym trójkqcie ma miarç c.450 Do 150 A fOwao8g. Rzucamy dwa razy symetryczną sześcienną kostką do gry. Niech $p$ oznacza prawdopodobieństwo zdarzenia, że iloczyn liczb wrzuconych oczek jest równy 5. WtedyA. $p=\frac{1}{36}$B. $p=\frac{1}{18}$C. $p=\frac{1}{12}$D. $p=\frac{1}{9}$ Liczba $\begin{gather*}\frac{\sqrt{50}-\sqrt{18}}{\sqrt{2}}\end{gather*}$ jest równaA. $2\sqrt{2}$B. $2$C. $4$D. $\sqrt{10}-\sqrt{6}$ Mediana uporządkowanego, niemalejącego zestawu liczb: $1,2,3,x,5,8$ jest równa 4. Wtedy A. $x=2$B. $x=3$C. $x=4$D. $x=5$ Objętość graniastosłupa prawidłowego trójkątnego o wysokości $7$ jest równa $28\sqrt{3}$.Długość podstawy tego graniastosłupa jest równaA. 2B. 4C. 8D. 16 Rozwiąż równanie $x^3+2x^2 -8x-16=0$. Kąt $\alpha$ jest ostry i $\sin \alpha=\frac{\sqrt{3}}{2}.$ Oblicz wartość wyrażenia $\sin^2\alpha-3\cos^2\alpha$. Udowodnij, że dla dowolnych liczb rzeczywistych $x,y,z$ takich, że $x +y+z=0$, prawdziwa jest nierówność $xy+yz+zx\leqslant 0$.Możesz skorzystać z tożsamości $(x+y+z)^2=x^2+y^2+z^2+2xy+2xz+2yz$. Szybka nawigacja do zadania numer: 5 10 15 20 25 30 .Wskaż rysunek, na którym przedstawiony jest zbiór rozwiązań nierówności \(2(3 − x) > x\). DGdy od \(17\%\) liczby \(21\) odejmiemy \(21\%\) liczby \(17\), to otrzymamy A.\( 0 \) B.\( \frac{4}{100} \) C.\( 3{,}57 \) D.\( 4 \) ALiczba \(\frac{5^3\cdot 25}{\sqrt{5}}\) jest równa A.\( 5^5\sqrt{5} \) B.\( 5^4\sqrt{5} \) C.\( 5^3\sqrt{5} \) D.\( 5^6\sqrt{5} \) BRozwiązaniem układu równań \(\begin{cases} 3x-5y=0\\ 2x-y=14 \end{cases} \) jest para liczb \((x,y)\) takich, że A.\(x\lt 0\)i\(y\lt 0\) B.\(x\lt 0\)i\(y>0\) C.\(x>0\)i\(y\lt 0\) D.\(x>0\)i\(y>0\) DFunkcja \(f\) jest określona wzorem \(f(x)=\frac{2x}{x-1}\) dla \(x\ne 1\). Wartość funkcji \(f\) dla argumentu \(x=2\) jest równa A.\( 2 \) B.\( -4 \) C.\( 4 \) D.\( -2 \) CLiczby rzeczywiste \(a, b, c\) spełniają warunki: \(a+b=3, b+c=4\) i \(c+a=5\). Wtedy suma \(a+b+c\) jest równa A.\( 20 \) B.\( 6 \) C.\( 4 \) D.\( 1 \) BProstą równoległą do prostej o równaniu \(y=\frac{2}{3}x-\frac{4}{3}\) jest prosta opisana równaniem A.\( y=-\frac{2}{3}x+\frac{4}{3} \) B.\( y=\frac{2}{3}x+\frac{4}{3} \) C.\( y=\frac{3}{2}x-\frac{4}{3} \) D.\( y=-\frac{3}{2}x-\frac{4}{3} \) BDla każdych liczb rzeczywistych \(a, b\) wyrażenie \(a-b+ab-1\) jest równe A.\( (a+1)(b-1) \) B.\( (1-b)(1+a) \) C.\( (a-1)(b+1) \) D.\( (a+b)(1+a) \) CWierzchołek paraboli o równaniu \(y=(x+1)^2+2c\) leży na prostej o równaniu \(y=6\). Wtedy A.\( c=-6 \) B.\( c=-3 \) C.\( c=3 \) D.\( c=6 \) CLiczba \(\log_2{100}-\log_2{50}\) jest równa A.\( \log_2{50} \) B.\( 1 \) C.\( 2 \) D.\( \log_2{5000} \) BWielomian \(W(x)=(3x^2-2)^2\) jest równy wielomianowi A.\( 9x^4-12x^2+4 \) B.\( 9x^4+12x^2+4 \) C.\( 9x^4-4 \) D.\( 9x^4+4 \) AZ prostokąta \(ABCD\) o obwodzie \(30\) wycięto trójkąt równoboczny \(AOD\) o obwodzie \(15\) (tak jak na rysunku). Obwód zacieniowanej figury jest równy A.\( 25 \) B.\( 30 \) C.\( 35 \) D.\( 40 \) CLiczby \(3x−4\), \(8\), \(2\) w podanej kolejności są pierwszym, drugim i trzecim wyrazem ciągu geometrycznego. Wtedy A.\( x=-6 \) B.\( x=0 \) C.\( x=6 \) D.\( x=12 \) DPunkt \(S=(4,1)\) jest środkiem odcinka \(AB\), gdzie \(A=(a,0)\) i \(B=(a+3,\ 2)\). Zatem A.\( a=0 \) B.\( a=\frac{1}{2} \) C.\( a=2 \) D.\( a=\frac{5}{2} \) DIle jest wszystkich liczb naturalnych trzycyfrowych podzielnych przez \(5\)? A.\( 90 \) B.\( 100 \) C.\( 180 \) D.\( 200 \) CPunkt \(O\) jest środkiem okręgu o średnicy \(AB\) (tak jak na rysunku). Kąt \(\alpha \) ma miarę A.\( 40^\circ \) B.\( 50^\circ \) C.\( 60^\circ \) D.\( 80^\circ \) BNajdłuższa przekątna sześciokąta foremnego ma długość \(8\). Wówczas pole koła opisanego na tym sześciokącie jest równe A.\( 4\pi \) B.\( 8\pi \) C.\( 16\pi \) D.\( 64\pi \) CPole równoległoboku o bokach długości \(4\) i \(12\) oraz kącie ostrym \(30^\circ\) jest równe A.\( 24 \) B.\( 12\sqrt{3} \) C.\( 12 \) D.\( 6\sqrt{3} \) ALiczba wszystkich krawędzi graniastosłupa jest równa \(24\). Wtedy liczba wszystkich jego wierzchołków jest równa A.\( 6 \) B.\( 8 \) C.\( 12 \) D.\( 16 \) DObjętość walca o wysokości \(8\) jest równa \(72\pi\). Promień podstawy tego walca jest równy A.\( 9 \) B.\( 8 \) C.\( 6 \) D.\( 3 \) DLiczby \(7, a, 49\) w podanej kolejności tworzą ciąg arytmetyczny. Wtedy \(a\) jest równe A.\( 14 \) B.\( 21 \) C.\( 28 \) D.\( 42 \) CCiąg \((a_n)\) jest określony wzorem \(a_n=n^2-n\), dla \(n \ge 1\). Który wyraz tego ciągu jest równy \(6\)? BRzucamy dwa razy symetryczną sześcienną kostką do gry. Prawdopodobieństwo dwukrotnego otrzymania pięciu oczek jest równe A.\( \frac{1}{6} \) B.\( \frac{1}{12} \) C.\( \frac{1}{18} \) D.\( \frac{1}{36} \) DKąt \(\alpha \) jest ostry i \(\sin \alpha =\frac{\sqrt{3}}{3}\). Wtedy wartość wyrażenia \(2cos^2\alpha -1\) jest równa A.\( 0 \) B.\( \frac{1}{3} \) C.\( \frac{5}{9} \) D.\( 1 \) BNa rysunku przedstawiono wykres funkcji \(y=f(x)\). Największa wartość funkcji \(f\) w przedziale \([-1,1]\) jest równa A.\( 4 \) B.\( 3 \) C.\( 2 \) D.\( 1 \) BRozwiąż nierówność \(3x-x^2 \ge 0\).\(x\in \langle 0;3 \rangle \)Rozwiąż równanie \(x^3-6x^2-12x+72=0\).\(x=6\) lub \(x=2\sqrt{3}\) lub \(x=-2\sqrt{3}\)Kąt \(\alpha \) jest ostry i \(\operatorname{tg} \alpha =2\). Oblicz \(\frac{\sin \alpha -\cos \alpha }{\sin \alpha +\cos \alpha }\).\(\frac{1}{3}\)W tabeli zestawiono oceny z matematyki uczniów klasy \(3A\) na koniec semestru. Ocena123456 Liczba ocen04913\(x\)1 Średnia arytmetyczna tych ocen jest równa \(3{,}6\). Oblicz liczbę \(x\) ocen bardzo dobrych \((5)\) z matematyki wystawionych na koniec semestru w tej klasie. \(x=3\)Uzasadnij, że jeżeli \(a\) jest liczbą rzeczywistą różną od zera i \(a+\frac{1}{a}=3\), to \(a^2+\frac{1}{a^2}=7\)Długość krawędzi sześcianu jest o \(2\) krótsza od długości jego przekątnej. Oblicz długość przekątnej tego sześcianu.\(3+\sqrt{3}\)Dane są dwie prostokątne działki. Działka pierwsza ma powierzchnię równą \(6000\) m2. Działka druga ma wymiary większe od wymiarów pierwszej działki o \(10\) m i \(15\) m oraz powierzchnię większą o \(2250\) m2. Oblicz wymiary pierwszej działki.\(40\times 150\) lub \(100\times 60\)Punkty \(A=(-1,-5), B=(3,-1)\) i \(C=(2,4)\) są kolejnymi wierzchołkami równoległoboku \(ABCD\). Oblicz pole tego równoległoboku.\(P=24\)Objętość ostrosłupa prawidłowego trójkątnego \(ABCS\) (tak jak na rysunku) jest równa \(72\), a promień okręgu wpisanego w podstawę \(ABC\) tego ostrosłupa jest równy \(2\). Oblicz tangens kąta między wysokością tego ostrosłupa i jego ścianą boczną. \(\operatorname{tg} \alpha =\frac{\sqrt{3}}{9}\) Korepetycje u autora przez internet! Szukasz korepetycji na najwyższym poziomie bez wychodzenia z domu? Przydatne materiały Kontakt z nami Napisz wiadomość Kąt \( \alpha \) jest ostry i \( \sin \alpha = \frac{\sqrt{3}}{3} \). Wtedy wartość wyrażenia \( 2cos^2\alpha - 1 \) jest równa A. \( 0 \) B. \( \frac{1}{3} \) C. \( \frac{5}{9} \) D. \( 1 \) Wartość \( \cos^2\alpha \) policzymy wykorzystując jedynkę trygonometryczną, czyli \[ \class{color1}{\text{sin}}^2\class{color2}{\alpha}+\class{color1}{\text{cos}}^2\class{color2}{\alpha}=1 \] Podstawmy za \( \sin \alpha \) wartość z treści zadania, czyli \( \frac{\sqrt{3}}{3} \) i wyliczmy \( \cos^2\alpha \). \[ \left(\frac{\sqrt{3}}{3}\right)^2 + \cos^2\alpha = 1 \\ \frac{\sqrt{3}^2}{3^2} + \cos^2\alpha = 1 \\ \begin{matrix} \frac{3}{9} + \cos^2\alpha = 1 & / - \frac{3}{9} \end{matrix} \\ \cos^2\alpha = 1- \frac{3}{9} = \frac{6}{9}=\frac{2}{3} \] Podstawmy do wyrażenia z zadania \( 2\cos^2\alpha - 1 \) wyliczoną wartość i wyliczmy \[ 2\cos^2\alpha - 1 = 2\cdot\frac{2}{3} - 1 = \frac{4}{3} - 1 = \frac{4}{3}-\frac{3}{3}=\\ \frac{4-3}{3}=\frac{1}{3} \] Prawidłowa odpowiedź to odpowiedź B. Drukuj Polub nas Rozwijaj swoje SocialMedia! Skorzystaj z Naszego nowego Projektu! Kup Like na Facebook, Instagram, Youtube!

matura czerwiec 2013 zad 24